Enhancing Arabic Maghribi Handwritten Text Recognition with RASAM 2: A Comprehensive Dataset and Benchmarking - École nationale des chartes
Communication Dans Un Congrès Année : 2024

Enhancing Arabic Maghribi Handwritten Text Recognition with RASAM 2: A Comprehensive Dataset and Benchmarking

Résumé

Recent advancements in handwritten text recognition (HTR) for historical documents have demonstrated high performance on cursive Arabic scripts, achieving accuracy comparable to Latin scripts. The initial RASAM dataset, focused on three Arabic Maghribi manuscripts, facilitated rapid coverage of new documents via fine-tuning. However, HTR application for Arabic scripts remains constrained due to the vast diversity in spellings, ambiguities, and languages. To overcome these challenges, we present RASAM 2, an extended dataset with 3,750 lines from 15 manuscripts in the BULAC library, showcasing various hands, layouts, and texts in Arabic Maghribi script. RASAM 2 aims to establish a new benchmark for HTR model training for both Maghribi and Oriental scripts, covering text recognition and layout analysis. Preliminary experiments using a word-based CRNN approach indicate significant model versatility, with a nearly 40% reduction in Character Error Rate (CER) across new in-domain and out-of-domain manuscripts.
Fichier principal
Vignette du fichier
main.pdf (9.13 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04722622 , version 1 (05-10-2024)

Licence

Identifiants

  • HAL Id : hal-04722622 , version 1

Citer

Chahan Vidal-Gorène, Clément Salah, Noëmie Lucas, Aliénor Decours-Perez, Antoine Perrier. Enhancing Arabic Maghribi Handwritten Text Recognition with RASAM 2: A Comprehensive Dataset and Benchmarking. Computational Humanities Research (CHR), Dec 2024, Aarhus, Denmark. pp.200-216. ⟨hal-04722622⟩
91 Consultations
29 Téléchargements

Partager

More