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Abstract. This paper investigates the development and assessment of
a methodology for the automatic detection and interpretation of dam-
aged medieval Armenian inscriptions and graffiti. The research utilizes a
newly compiled dataset of 150 images that include a variety of inscrip-
tions, mosaics, and graffiti. These images are sourced from general ar-
chaeological site views and vary in quality and type, including drone and
archival photos, to replicate real-world database challenges. The results
highlight the efficiency of a two-step detection and classification pipeline.
The detection phase employs a YOLO v8 model to identify the location
and content of inscriptions, achieving an average Precision and Recall of
0.91 and 0.88, respectively. The classification phase uses a Vision Trans-
former (ViT) to identify similar characters, which outperforms classic
CNN-based Siamese networks to handle such a complexity and variation.
This approach demonstrates potential for analyzing under-resourced and
damaged corpora, thus facilitating the study of deteriorated inscriptions
in a variety of contexts.

Keywords: Armenian inscriptions · Digital epigraphy · Computational
Paleography · Vision Transformer · Object Detection · Instance Segmen-
tation · Image similarity

1 Introduction

Armenian religious monuments are generally substantially covered with epigraphs
and graffiti. They are the writting evidences of the foundation or the renovation
of the building, and provide information on the date of construction, the name
of the patron, or the purpose of the monument, as well as the passage of the pil-
grims. Their deciphering is hindered by the test of time or wilful human damage,
which reveals complex even for epigraphists. In some extreme cases, parts or all
of the inscriptions are missing and the strong ambiguity of the remaining graphic
forms calls for speculation. The most ancient inscriptions that have been dated,
prior to the 8th century, though very few, have been the most documented, and
can be found in most medieval corpora published since the 19th century, no-
tably in Ališan [2], Yovsēp’ean [24], Kouymjian & Stone [20], Greenwood [8],
and Mouraviev [14]. However, the later inscriptions and graffiti, despite partial
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collection, identification, and transcription efforts since 1966 [4], are often only
briefly documented and deciphered due to their sheer volume. The multiplication
of image databases, for example within collaborative projects like Wikimedia-
Commons, institutional ones like MonumentWatch, or photogrametric projects
carried out by researchers [13] or by private initiatives (Iconem, TUMO), is
contributing to the preservation of these testimonies. However, because of their
volume, the variety and quality of their formats (written, photographic, 3D),
and the damage they have suffered, in the end, very little analysis is done, and
the inscriptions remain therefore inaccessible.

This overall inaccessibility is also due to the specific features of the Arme-
nian epigraphic tradition, which encompasses a previous state of the language (or
Classical Armenian, even Middle Armenian for some inscriptions), a combination
of letters specific to each lapicide – hence, the large variety of monograms –, and
the very location of the inscriptions on the monument, which are often high up
or poorly oriented (either from the outset or following restoration) and therefore
out of reach of the human eye, whether specialist or not (see infra Section 3).
To this day, no computational approach has yet been explored for Armenian
epigraphy, therefore, the aim of this paper is first to explore the feasability of
automatic detection of Armenian inscriptions and graffiti in images of varying
resolution, and then to explore the classification of the glyphs detected, with a
view to proposing an aid for reading these witnesses. This article is an opportu-
nity to build up a first small dataset representative of the Armenian epigraphic
production, limited to a capital script from the erkat’agir type. This study is
set in the context of limited data.

2 Related Works

As a matter of fact, the main difficulty encountered upon computational pro-
cessing of Armenian sources is the critical lack of data, often incompatible with
the training of ML models. If the data creation and retrieval chains for HTR
issues regarding medieval handwritten sources are now well established, it is not
yet the case for the palaeographical and epigraphical issues, all the more so when
sources are damaged. A recent study on Aramaic inscriptions [1] demonstrated
that using Generative Adversarial Networks (GANs) to generate 250,000 dam-
aged samples can simulate a representative dataset. This approach achieved over
95% classification accuracy with a common ResNet, given a limited number of
different classes (22 Aramaic characters). Although GANs have proven useful,
their effectiveness remains primarily within in-domain studies that can tolerate
potential overfitting[1, 21]. Generally, these datasets do not exceed a few tens of
thousands of samples. In our study, we did not use GANs for data improvement,
focusing instead on real-world image variations.

Although direct HTR-type approaches have been tried out, with for exemple
the use of Tesseract for the recognition of Tamul inscriptions [7], the state-of-
the-art shows today the predominance of a two-step approach: a first step for
the character detection and a second for their classification [23]. Predictably, the
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detection step is performed as an object detection task by faster-RCNN [18] or
YOLO [18, 5], with an Accuracy and a Recall in average above 90% for Ancient
and Byzantine Greek. However, both approaches remain unstable, easily produc-
ing numerous false positives when met with an advanced state of deterioration,
with strong ambiguity of the residual forms [18]. To resolve this ambiguity when
the inscription has a high density, the use of a U-net – trained to segment se-
mantically at pixel level – seems to achieve promising results on bones engraved
with Chinese inscriptions [6]. The same applies for a CNN-Siamese approach
based once again on a faster-RCNN [18]. The assessment remains qualitative for
the time being. In turn, the classification stage remains largely prospective: a
semi-supervised classification predominates, based on the use of a ResNet [1, 5]
or a VGG [22, 10] pre-trained on ImageNet, from which the classification layer
is removed in order to cluster the extracted features. This method is not only
used to classify characters, but also to date inscriptions (with 85.94% Accuracy
for Sinhalese incriptions), to identify Latin [11] and Armenian [22] scripts, or
categorise hieroglyphic artifacts [9]. The use of CNN-Siamese networks is also
used in Ancient Greek [17] and in Aramaic, that displays a 77% efficient classi-
fication, just as a VisionTransformer [15]. These approaches, who are based on
similarity, exceed a directly supervised classification [18]. Finally, the detection
and partial classification of a set of characters can enable statistical completion
of the inscription, which has been used for the first time in Greek with 62%
Accuracy and in Latin [3, 12].

3 Notions of Armenian Epigraphy

The Armenian alphabet, dating back from the 5th century, is composed of 36
letters (24 letters from the Greek alphabet among which are interspersed letters
to cover sounds specific to Armenian), with the addition of two new letters in the
12th century to cover two new sounds /f/ and /o/. The Armenian epigraphic
production has largely remained confined to the erkat’agir type, a capital bi-
cameral script generally associated with the uncial [20], that is classicaly used
in lapidary inscriptions, ancient graffiti and manuscripts up to the 10-11th cen-
turies – date from which its use in manuscripts declines. The alphabet is also
used to write numbers.

The Armenian inscriptions are not very difficult to read: the letters are of
substantial size, and if there is no spaces in between words and no apparent
logic to the word breaks by default, all letters are evenly spaced out at a width
equivalent to an upstroke. Writing lines are sometimes even perceptible. The
inscriptions can be V-shaped or flat-bottomed engraved (the latter is more rep-
resented in inscriptions located up high on the monument). Some churches are
heavily covered of inscriptions, sometimes contiguous with no semantic conti-
nuity. The Armenian characters however are composed of a small number of
structural features, aside from round letters, they are limited to an upstroke, a
curved or round stroke and a connecting or cross stroke. Only the equivalents of
the apex and the ending stroke can be used to determine the orientation of the
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upstroke or of the round stroke (voir Figure 1). Deterioration of any kind to the
inscription on either side of the median line results in extreme ambiguity (e.g.
addition of artifacts that can be confused with the round or cross strokes, or
even the disappearance of a round or cross stroke critical to decipher the letter),
that can only be resolved through the understanding of the context. Depending
on the lapicide, the serif of the structural strokes can be enhanced with aesthetic
features (e.g. triangular engraving).

Fig. 1. Schematic representation of structural features of the main Armenian letters,
inspired by the model of the inscription of Mastara (7th c.). The first group is composed
of one ascender, one right curved stroke and one right cross stroke; the second group
is composed of one upstroke, one left curved stroke and one right cross stroke; the
third group is composed of one descender, one right curved stroke and one right cross
stroke; the fourth and fifth group are composed of two upstrokes (one ascender and one
descender), or possibly of one left upstroke and one right cross stroke; and the sixth
group is composed of one upstroke and two curved strokes on each side.

Another difficulty lies in the frequent use of ligatures by the lapicide, who
is joining together one or more vowels with one or more consonants for space-
saving purposes. The defining structural stroke for an Armenian letter being the
upstroke, it can indeed be used as a basis for one or several characters.

The most common ligature shape encloses two letters, but there is no struc-
tural limitation to the number of possible combinations. Although, for some
combinations, the ligature is easy to read for the epigraphist, for other combina-
tions, it is less self evident and it creates an object detection problem in its own
right: should a separate distinct class be created for each ligature? The variety
and the low representation of each combination do not support this solution.
Conversely, should the annotation strictly follow the 36+2 Armenian letters?
The overlapping of bounding boxes (bboxes) and the presence of multiple valid
interpretations can cause a high false-positive rate. Moreover, the geometric com-
plexity of ligatures and the independent reading order of the signs add to the
challenge (see Figure 2).

Figure 2 presents two types of common ligatures: the first one consists in
the adjunction of the tops and bottoms of the upstrokes with no impact to the
reading direction. The strict annotation per character is possible, but requires
the blue bbox to have a shorter height, a format likely to be under represented,
for which it is reasonable to assume that the model will tend to detect the whole
height of the letter, that will become ambiguous. The second example is more
frequent: a single upstroke combining all curved and cross strokes. As a result,
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Fig. 2. Two examples of ligatures, their reading, possible annotations and the conse-
quences classification-wise. (1) Inscription of Arudj (8th c.) et (2) inscription of Yer-
itsmangants (1691).

the green and red bboxes have an intersection close to 1, and the blue bbox
may correspond to 4 different shapes, depending on the thickness given by the
lapicide to the connecting strokes and serif.

As for the punctuation and the accentuation marks, there is less volume and
variety than in Armenian manuscripts. Three types of points are generally found:
the median and upper point that indicate a pause, and the two points that marks
the ending of the sentence. They come either in diamond or triangular shape,
with rectilinear V-shaped engraving. They can be confused with the serif of some
characters (orange and red strokes in Figure 1, when the connecting strokes are
fine), or with impacts on the stone.

The medieval graffiti display the same attributes as the inscriptions, with
a shallower engraving – the stone being usually scratched –, less regularity in
the character morphology, and less rectilinear text. They are often limited to an
isolated surname, but can also be part of a dedication such as "Remember me
[surname]". Medieval graffiti are scarcely found on the walls of medieval churches
(also due to the test of time and reconstructions), on the other hand, walls are
covered in very recent graffiti of interest not targeted by the present study.
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4 Methodology and Dataset

In order to detect and read the damaged inscriptions and graffiti we are setting
a two-step pipeline: first, detection of the insription and of the characters; then,
a classification of the crops of caractères obtained via similarity calculation.

4.1 Dataset

The dataset is composed of 150 images of inscriptions, mosaics and various graf-
fiti. The stress is put on the inscriptions prior to the 9th century and deteriorated,
hard to read, as well as Armenian graffiti from Sinai from the 5-7th centuries [16,
19]. Around a quarter of the inscriptions are dated from after the 9th century,
with an upper limit in the 17th century, in order to have more legible images.
The images used are not all centered on the inscriptions but are general views of
walls or overall views of an archaeological site, and mix recent views with archive
photos. The goal of this variety is to simulate a real-life application, with a wide
range of shots and qualities (brightness, zoom, sharpness, camera, etc.), repre-
sentative of existing digital databases (see Figure 3). For example, it is the case
of images 3 and 5 in Figure 3, shot in the 1970s, or conversely, image 6 is a 4K
view taken by drone to create a photogrammetric model. This nevertheless rep-
resents a very significant bias in the ability of the models to converge, especially
given the volume considered in the article.

Figure 3 also underlines the difficulty encountered by the dataset with regard
to the ambiguity that exists between a deterioration mark and a character (e.g.
images 2 and 7), and among graffiti, when mixed with other non-Armenian
graffiti (e.g. image 5, where Greek and Latin graffiti are not tagged, like in
image 6 if non-Armenian inscription or unrelevant graffiti are present in the
overall view).

Table 1 summarizes the distribution of images according to the source type.
Mosaics, fairly scarce in the Armenian production, are largely minority within
the dataset. There are perhaps as many inscriptions as graffiti, but the count
overall is clearly in favor of lapidary inscriptions, the latter generally have more
than 3 lines each and more text.

Table 1. Dataset summary

Source Type Date Damage Im. Quality Script Insc. Lines Char.

Inscription Mixed
(drone, camera, book) 7-17th c. Partial Mixed Erkat. 92 303 6,072

Mosaïc Camera 5-6th c. No NTR Erkat. 9 10 352

Graffiti Archives 5-6th c. Yes Blur,
overexposure Erkat. 74 145 870

TOTAL: 150 images including 175 458 7,294

At the annotation level, we decided to resolve the ambiguity of ligatures
mentioned in Section 3 by identifying a type ligature as a separate class (each
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Fig. 3. Dataset samples. (1) Door inscription from Aruj monastery (7th c.), (2) Komi-
tas inscription (618 A.D.) from Album of Armenian Paleography, (3 and 5) graffiti
of Sinai (5th c.) from The Rock Inscriptions Project, (4) Inscription of Grigoras from
Mastara (7th c.), (6) West front of Mastara (7th c.), (7) Yakovb inscription of Ereruyk
(6-7th c.) and (8) Uxtatur inscription from Talin (683 A.D.)

different ligature is now the subject of a separate class). Predictably, the dataset
is very unbalanced in terms of character classes: the letter a, the most frequent
in the alphabet, covers 26% of annotation on its own, whereas the ligatures and
the characters ō and f have only a single occurrence, and the characters č, ž,
and š have fewer than 10 occurrences.

4.2 Step 1: Three-Stage YOLO-Based Inscription Detection

At the detection level, we are evaluating the use of YOLO v8, through the
combination of three models:

1. m-Instinsc: detection of inscriptions in an image (instance segmentation, for
management of various viewing angles and separation from adjacent inscrip-
tions). The output of this model will correspond to the input of the following
models;

2. m-Objchar: detection of glyphs through an object detection approach with
a single class (there is not enough representatives per class for direct detec-
tion);
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3. m-Instline: detection of a line of text to re-assemble and order glyphs (in-
stance segmentation). Line characters are sorted using the centroid, with
simple left-to-right applied to characters, up-and-down applied to lines.

Fig. 4. Detection pipeline involving three YOLO v8 models

All three models perform a single-class classification. For all three, intense
dynamic data augmentation is performed during training, similar to that used for
papyri detection [18], including image scaling at each iteration and random pixel
dropout to simulate further deteroriation. The dropout is set at 20% and the size
of image at 1024px. We use the weights from the previous model as the initial
weights for the next model, effectively fine-tuning each subsequent model based
on the trained weights of its predecessor. This approach aims to incrementally
improve performance by leveraging the learning from earlier stages. At each step,
10 cross-validation are performed by redistributing the data into train and val,
and then evaluation occurs on the same fixed test set. The scores presented in
Table 2 are the average obtained of these 10 experiences.

4.3 Step 2: Classification for Characters Similarity

At the classification level, we are following the approaches used for the Aramaic
bowl [15], though changing the task performed and the depth of the models.

The first experiment consists in training a Siamese network to identify pairs
of similar images (see Figure 5). The architecture of our Siamese network con-
sists of three main components: a pretrained ResNet50 that will encode an em-
bedding, an euclidian distance for evaluating the similarity, and the contrastive
loss function that penalizes the model if the distance between similar inputs
exceeds 0.5 or if it falls below this threshold for dissimilar inputs, thus pro-
moting the generation of appropriate embeddings. One of the models of the
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Siamese network is trained with similar pairs and the other with dissimilar
pairs. The contrastive loss function computes the loss for each pair of embed-
dings, encouraging similar pairs to have a smaller distance and dissimilar pairs
to have a larger distance. The general formula for contrastive loss is as follows:
L = (1−y)×Dist2Eucl+y×max(0, σ−DistEucl)

2, with y ∈ {0, 1}, 0 for similar
and 1 for dissimilar, and σ the threshold for dissimilarity.

Fig. 5. CNN-based Siamese network using a contrastive loss for similarity classification
of characters

The second experiment relies on the use of a distilled Vision Transformer
(Data-efficient Image Transformers or DeiT). The approach is no longer based
on CNNs but on a full transformer based approach. Images are divided into
fixed-size, non-overlapping patches to input into the Transformer encoder. These
patches are linearly embedded, and a class token is added as a global image
representation for classification. Additionally, absolute position embeddings are
incorporated, and the assembled vector sequence is processed by a standard
Transformer encoder. Here, the Transformer model’s attention mechanism is
designed to capture global dependencies and modeling long-range interactions
between image patches. The aim is not to train the model with similar and
dissimilar pairs anymore, but to create an index from the embeddings of all
datasets, and then to perform a similarity search for a given input (see Figure 6).

4.4 Metrics

To measure the effectiveness of the entire pipeline for detection and reading, we
define a comprehensive metric that combines the individual evaluation metrics
(Precision, Recall, and mean Average Precision, mAP) from each step into a
single score. The F1-Score (F1i) at each stage balances Precision and Recall,
providing a robust measure that accounts for both true positive detection and
the minimization of missed relevant data. The mean Average Precision (mAPi)
evaluates the model’s precision at different Intersection over Union (IOU) thresh-
olds, reflecting its consistency and accuracy.
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Fig. 6. Vision Transformer using embedded patches and DeiT encoder to perform
similarity

Weighting factors (wi) are assigned to each stage to reflect their relative im-
portance in the pipeline. For instance, we prioritize the detection of inscriptions
and characters over lines. We combine these metrics with a weighted sum, bal-
ancing the F1-scores and mAPs according to their relevance in the model type.
This weight is noted αi. The final score, Global Score (GS), is the sum of each
weighted score (Si). Thus, for i ∈ [1, n]:

GS =

n∑
i=1

wi × Si =

n∑
i=1

wi × (αi × F1i + (1− αi)×mAPi) (1)

5 Results and Discussion

Table 2 summarizes the outcomes achieved for each detection step. Several con-
figurations have been tested: (i) with or without data augmentation, (ii) single
and multi-class for the character detection, and (iii) with or without the use of
the output obtained after step 1 (inscription detection).

We observe that data augmentation has a highly variable impact on improv-
ing results. In general, it is worth mentioning that it increases the Precision, with
a limited effect on the Recall (thus producing more false positives), except for
the single-class configuration for character detection (standalone), where data
augmentation results in decreased both Precision and Recall (from 0.87 to 0.73
in Precision and from 0.54 to 0.46 in Recall), which could suggest that the aug-
mentation method used may not be optimal or the model overfits without it.

At the character and line detection level, using the output obtained after
step 1 (inscription detection) results in a largely better detection, around +30%,
even if it is not yet optimal, and the mask produced tends to cut the edges of
the inscriptions, thus cropping some of the letters.

Regarding the character detection, we get mixed results in multi-class de-
tection, to be put in perspective with the classification task. Nevertheless, the
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Table 2. Inscription detection results using several data augmentation and
multi/single-class configuration. Mean Precision, Recall and mAP after 10 random
splits

Augment P R mAP
Inscription detection (mask)
m-Instinsc 1 - 0.72 0.87 0.73
m-Instinsc 2 ✓ 0.91 0.88 0.90
Char detection (bbox)
m-Objchar multi-class 1 (stand alone) - 0.21 0.18 0.16
m-Objchar multi-class 2 (stand alone) ✓ 0.29 0.17 0.24
m-Objchar multi-class 3 (using m-Instinsc output) - 0.43 0.47 0.28
m-Objchar multi-class 4 (using m-Instinsc output) ✓ 0.57 0.61 0.54
m-Objchar single-class 1 (stand alone) - 0.87 0.54 0.77
m-Objchar single-class 2 (stand alone) ✓ 0.73 0.46 0.69
m-Objchar single-class 3 (using m-Instinsc output) - 0.90 0.82 0.89
m-Objchar single-class 4 (using m-Instinsc output) ✓ 0.91 0.84 0.90
Line detection (mask)
m-Instline single-class 1 (stand alone) - 0.67 0.34 0.64
m-Instline single-class 2 (stand alone) ✓ 0.74 0.31 0.65
m-Instline single-class 3 (using m-Instinsc output) - 0.94 0.91 0.95
m-Instline single-class 4 (using m-Instinsc output) ✓ 0.94 0.93 0.96

model m-Objchar multi-class 4 (using m-Instinsc output) achieves 0.43 Precision
and 0.47 Recall in detection and direct classification of characters, on the same
basis as the results obtained on the papyri with the very same model [18], but
with five time less data in training (35,597 characters for the papyri vs 7,294).
However, the mAP is low. The scores obtained for YOLO multi-class are the
average of all classes and therefore reflect only the few most endowed classes
(see infra 4.1).

As for the results for similar pair identification, in order to overcome the
extreme disproportion between classes, we keep only 50 samples per class. The
under-resourced classes are artificially augmented through data augmentation
(using blur, rotation, chanel dropout, and pixel dropout), and each experiment
is repeated 10 times with random sample selection for each class. Table 3 sum-
marizes the results.

Table 3. Classification results. Accuracy corresponds to the performance of the model
in training with manually labeled data, where Precision and Recall correspond to the
test using crops of the detection step

Model P R Accsimilar Accdissimilar

Siamese 0.42 0.42 0.54 0.55
ViT 0.67 0.71 0.78 0.81
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The results of the Siamese network in this configuration are much lower
than those of the Vision Transformer, and even equivalent to those of YOLO
in multi-class detection. The limits of the Siamese network can undoubtedly be
explained by the very small size of the dataset due to its complexity and it is
appropriate, at this stage, not to completely exclude it from the experiments.
The ViT, on the other hand, shows an excellent ability to identify similar pairs
in under-resourced contexts, including when the damage or support vary a lot.
Table4 gives the global score for each pipeline.

Table 4. Global scores for each configuration of Detection and Classification, with the
sum of wdetection,i = 0.6 and α = 0.3 to prioritize mAP in detection tasks

Category w α P R F1 mAP Score
Inscription detection 0.3 0.3 0.91 0.88 0.89 0.90 0.90
Char. Detection single-class 0.25 0.3 0.91 0.84 0.87 0.90 0.89
Char. Detection multi-class 0.45 0.3 0.43 0.47 0.45 0.28 0.33
Line detection 0.05 0.7 0.94 0.93 0.93 0.96 0.94
Siamese 0.2 1.0 0.42 0.42 0.42 0.00 0.42
ViT 0.2 1.0 0.67 0.71 0.69 0.00 0.69
Combined Results
Ins+CharSingleClass+Line+Siamese 0.62
Ins+CharSingleClass+Line+ViT 0.68
Ins+CharMultiClass+Line 0.65

The final results show a slight advance of the YOLO + VisionTransformer
configuration for the detection and identification of characters in damaged Ar-
menian inscriptions and graffiti. Direct detection by YOLO also seems to be
possible, but the disproportion of classes between YOLO multi-class and ViT
skews the comparison.

6 Conclusion

The article proposes and assesses an end-to-end pipeline for detecting and read-
ing Armenian inscriptions in a very under-resourced and damaged context. The
detection scores demonstrate the benefit of a three-step detection of inscriptions,
characters and lines, with an average Precision of 0.92 and an average Recall of
0.88. The task of character classification, considered as a task of identification
of similar/dissimilar images, due to the high ambiguity of the characters and
the small size of the dataset, remains prospective but the use of a Vision Trans-
former outperforms a classic CNN-Siamese network. The Accuracy obtained on
the test set is on average 0.79, with a Precision of 0.67 and a Recall of 0.71 in
real conditions. For the future, we plan to significantly strengthen the dataset
in order to increase the representativeness of under-resourced classes and to in-
crease the versatility of the model in real images. Incorporating a language model
could further improve the results by providing contextual understanding of the
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inscriptions. For instance, using a pretrained Armenian language model might
help disambiguate characters based on surrounding text. This approach is worth
exploring in future work to enhance the accuracy and reliability of our detection
and classification pipeline.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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7 Appendix

Fig. 7. Qualitative results of inscription detection, single-class character detection and
character similrity using ViT


