Constrained and unconstrained stable discrete minimizations for p-robust local reconstructions in vertex patches in the de Rham complex - Centre d'Enseignement et de Recherche en Mathématiques, Informatique et Calcul Scientifique
Pré-Publication, Document De Travail Année : 2023

Constrained and unconstrained stable discrete minimizations for p-robust local reconstructions in vertex patches in the de Rham complex

Résumé

We analyze constrained and unconstrained minimization problems on patches of tetrahedra sharing a common vertex with discontinuous piecewise polynomial data of degree p. We show that the discrete minimizers in the spaces of piecewise polynomials of degree p conforming in the H1, H(curl), or H(div) spaces are as good as the minimizers in these entire (infinite-dimensional) Sobolev spaces, up to a constant that is independent of p. These results are useful in the analysis and design of finite element methods, namely for devising stable local commuting projectors and establishing local-best/global-best equivalences in a priori analysis and in the context of a posteriori error estimation. Unconstrained minimization in H1 and constrained minimization in H(div) have been previously treated in the literature. Along with improvement of the results in the H1 and H(div) cases, our key contribution is the treatment of the H(curl) framework. This enables us to cover the whole De Rham diagram in three space dimensions in a single setting.
Fichier principal
Vignette du fichier
chaumontfrelet_vohralik_2024a.pdf (699.86 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03749682 , version 1 (11-08-2022)
hal-03749682 , version 2 (26-07-2024)
hal-03749682 , version 3 (07-10-2024)

Licence

Identifiants

Citer

Théophile Chaumont-Frelet, Martin Vohralík. Constrained and unconstrained stable discrete minimizations for p-robust local reconstructions in vertex patches in the de Rham complex. 2023. ⟨hal-03749682v3⟩
410 Consultations
51 Téléchargements

Altmetric

Partager

More